Equicalmness and Epiderivatives That Are Pointwise Limits
D. Azé and
R. A. Poliquin
Additional contact information
R. A. Poliquin: University of Alberta
Journal of Optimization Theory and Applications, 1998, vol. 96, issue 3, No 4, 555-573
Abstract:
Abstract Recently, Moussaoui and Seeger (Ref. 1) studied the monotonicity of first-order and second-order difference quotients with primary goal the simplification of epilimits. It is well known that epilimits (lim inf and lim sup) can be written as pointwise limits in the case of a sequence of functions that is equi-lsc. In this paper, we introduce equicalmness as a condition that guarantees equi-lsc, and our primary goal is to give conditions that guarantee that first-order and second-order difference quotients are equicalm. We show that a piecewise-C 1 function f with convex domain is epidifferentiable at any point % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa!36EA! of its domain. We also show that a convex piecewise C 2-function (polyhedral pieces) is twice epidifferentiable. We thus obtain a modest extension of the Rockafellar result concerning the epidifferentiability of piecewise linear-quadratic convex functions.
Keywords: Piecewise-C k functions; equi-lsc functions; equicalmness; calmness; proxregularity; amenable functions; primal-lower-nice functions; Moreau envelopes; nonsmooth analysis; variational analysis; protoderivatives; epiderivatives (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1022660427548 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:96:y:1998:i:3:d:10.1023_a:1022660427548
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022660427548
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().