New Constrained Optimization Reformulation of Complementarity Problems
A. Fischer
Additional contact information
A. Fischer: Technical University of Dresden
Journal of Optimization Theory and Applications, 1998, vol. 97, issue 1, No 7, 105-117
Abstract:
Abstract We suggest a reformulation of the complementarity problem CP(F) as a minimization problem with nonnegativity constraints. This reformulation is based on a particular unconstrained minimization reformulation of CP(F) introduced by Geiger and Kanzow as well as Facchinei and Soares. This allows us to use nonnegativity constraints for all the variables or only a subset of the variables on which the function F depends. Appropriate regularity conditions ensure that a stationary point of the new reformulation is a solution of the complementarity problem. In particular, stationary points with negative components can be avoided in contrast to the reformulation as unconstrained minimization problem. This advantage will be demonstrated for a class of complementarity problems which arise when the Karush–Kuhn–Tucker conditions of a convex inequality constrained optimization problem are considered.
Keywords: Complementarity problems; reformulation as constrained minimization problems; stationary points; convex optimization (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022627217515 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:97:y:1998:i:1:d:10.1023_a:1022627217515
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022627217515
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().