Generalized Trajectory Methods for Finding Multiple Extrema and Roots of Functions
C. M. Yang and
J. L. Beck
Additional contact information
C. M. Yang: California Institute of Technology
J. L. Beck: California Institute of Technology
Journal of Optimization Theory and Applications, 1998, vol. 97, issue 1, No 11, 227 pages
Abstract:
Abstract Two generalized trajectory methods are combined to provide a novel and powerful numerical procedure for systematically finding multiple local extrema of a multivariable objective function. This procedure can form part of a strategy for global optimization in which the greatest local maximum and least local minimum in the interior of a specified region are compared to the largest and smallest values of the objective function on the boundary of the region. The first trajectory method, a homotopy scheme, provides a globally convergent algorithm to find a stationary point of the objective function. The second trajectory method, a relaxation scheme, starts at one stationary point and systematically connects other stationary points in the specified region by a network of trjectories. It is noted that both generalized trajectory methods actually solve the stationarity conditions, and so they can also be used to find multiple roots of a set of nonlinear equations.
Keywords: Homotopy; relaxation; trajectory tracking; global optimization; roots; nonlinear equations (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1022635419332 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:97:y:1998:i:1:d:10.1023_a:1022635419332
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022635419332
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().