EconPapers    
Economics at your fingertips  
 

New Theoretical Results on Recursive Quadratic Programming Algorithms

J. M. Martínez and L. T. Santos
Additional contact information
J. M. Martínez: State University of Campinas
L. T. Santos: State University of Campinas

Journal of Optimization Theory and Applications, 1998, vol. 97, issue 2, No 9, 435-454

Abstract: Abstract Recursive quadratic programming is a family of techniques developed by Bartholomew-Biggs and other authors for solving nonlinear programming problems. The first-order optimality conditions for a local minimizer of the augmented Lagrangian are transformed into a nonlinear system where both primal and dual variables appear explicitly. The inner iteration of the algorithm is a Newton-like procedure that updates simultaneously primal variables and Lagrange multipliers. In this way, as observed by Gould, the implementation of the Newton method becomes stable, in spite of the possibility of having large penalization parameters. In this paper, the inner iteration is analyzed from a different point of view. Namely, the size of the convergence region and the speed of convergence of the inner process are considered and it is shown that, in some sense, both are independent of the penalization parameter when an adequate version of the Newton method is used. In other words, classical Newton-like iterations are improved, not only in relation to stability of the linear algebra involved, but also with regard to the ovearll convergence of the nonlinear process. Some numerical experiments suggset that, in fact, practical efficiency of the methods is related to these theoretical results.

Keywords: Recursive quadratic programming; penalty methods; Newton method (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1023/A:1022686919295 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:97:y:1998:i:2:d:10.1023_a:1022686919295

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1023/A:1022686919295

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:97:y:1998:i:2:d:10.1023_a:1022686919295