Feasible Direction Interior-Point Technique for Nonlinear Optimization
J. Herskovits
Additional contact information
J. Herskovits: Federal University of Rio de Janeiro
Journal of Optimization Theory and Applications, 1998, vol. 99, issue 1, No 7, 146 pages
Abstract:
Abstract We propose a feasible direction approach for the minimization by interior-point algorithms of a smooth function under smooth equality and inequality constraints. It consists of the iterative solution in the primal and dual variables of the Karush–Kuhn–Tucker first-order optimality conditions. At each iteration, a descent direction is defined by solving a linear system. In a second stage, the linear system is perturbed so as to deflect the descent direction and obtain a feasible descent direction. A line search is then performed to get a new interior point and ensure global convergence. Based on this approach, first-order, Newton, and quasi-Newton algorithms can be obtained. To introduce the method, we consider first the inequality constrained problem and present a globally convergent basic algorithm. Particular first-order and quasi-Newton versions of this algorithm are also stated. Then, equality constraints are included. This method, which is simple to code, does not require the solution of quadratic programs and it is neither a penalty method nor a barrier method. Several practical applications and numerical results show that our method is strong and efficient.
Keywords: Nonlinear constrained optimization; interior-point methods; feasible direction algorithms (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1023/A:1021752227797 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021752227797
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1021752227797
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().