Distribution-free tests of mean vectors and covariance matrices for multivariate paired data
Erning Li (),
Johan Lim,
Kyunga Kim and
Shin-Jae Lee
Metrika: International Journal for Theoretical and Applied Statistics, 2012, vol. 75, issue 6, 833-854
Abstract:
We study a permutation procedure to test the equality of mean vectors, homogeneity of covariance matrices, or simultaneous equality of both mean vectors and covariance matrices in multivariate paired data. We propose to use two test statistics for the equality of mean vectors and the homogeneity of covariance matrices, respectively, and combine them to test the simultaneous equality of both mean vectors and covariance matrices. Since the combined test has composite null hypothesis, we control its type I error probability and theoretically prove the asymptotic unbiasedness and consistency of the combined test. The new procedure requires no structural assumption on the covariances. No distributional assumption is imposed on the data, except that the permutation test for mean vector equality assumes symmetric joint distribution of the paired data. We illustrate the good performance of the proposed approach with comparison to competing methods via simulations. We apply the proposed method to testing the symmetry of tooth size in a dental study and to finding differentially expressed gene sets with dependent structures in a microarray study of prostate cancer. Copyright Springer-Verlag 2012
Keywords: Multivariate paired data; Permutation; Equality of mean vectors; Homogeneity of covariance matrices (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0355-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:75:y:2012:i:6:p:833-854
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0355-7
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().