A linear approximation to the power function of a test
A. García-Pérez ()
Metrika: International Journal for Theoretical and Applied Statistics, 2012, vol. 75, issue 7, 855-875
Abstract:
In this paper we obtain a linear approximation to the power function of a test that is very accurate for small sample sizes. This is especially useful for robust tests where not many power functions are available. The approximation is based on the von Mises expansion of the tail probability functional and on the Tail Area Influence Function (TAIF). The goals of the paper are, first to extend the definition of the TAIF to the case of non identically distributed random variables, defining the Partial Tail Area Influence Functions and the Vectorial Tail Area Influence Function; second, to obtain exact expressions for computing these new influence functions; and, finally, to find accurate approximations to the power function, that can be used in the case of non identically distributed random variables. We include some examples of the application of this linear approximation to tests that involve the Huber statistic and also saddlepoint tests, so proving that the approximations apply not only to simple problems but also to complex ones. Copyright Springer-Verlag 2012
Keywords: Power function; Robust test; Tail area influence function; Huber statistic; Saddlepoint test (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0356-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:75:y:2012:i:7:p:855-875
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0356-6
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().