A multiple linear regression model for imprecise information
Maria Ferraro () and
Paolo Giordani
Metrika: International Journal for Theoretical and Applied Statistics, 2012, vol. 75, issue 8, 1049-1068
Abstract:
In standard regression analysis the relationship between the (response) variable and a set of (explanatory) variables is investigated. In the classical framework the response is affected by probabilistic uncertainty (randomness) and, thus, treated as a random variable. However, the data can also be subjected to other kinds of uncertainty such as imprecision. A possible way to manage all of these uncertainties is represented by the concept of fuzzy random variable (FRV). The most common class of FRVs is the LR family (LR FRV), which allows us to express every FRV in terms of three random variables, namely, the center, the left spread and the right spread. In this work, limiting our attention to the LR FRV class, we consider the linear regression problem in the presence of one or more imprecise random elements. The procedure for estimating the model parameters and the determination coefficient are discussed and the hypothesis testing problem is addressed following a bootstrap approach. Furthermore, in order to illustrate how the proposed model works in practice, the results of a real-life example are given together with a comparison with those obtained by applying classical regression analysis. Copyright Springer-Verlag 2012
Keywords: LR fuzzy data; Regression models; Least squares approach; Bootstrap procedure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0367-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:75:y:2012:i:8:p:1049-1068
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0367-3
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().