EconPapers    
Economics at your fingertips  
 

Inference by linearization for Zenga’s new inequality index: a comparison with the Gini index

Matti Langel () and Yves Tillé

Metrika: International Journal for Theoretical and Applied Statistics, 2012, vol. 75, issue 8, 1093-1110

Abstract: Zenga’s new inequality curve and index are two recent tools for measuring inequality. Proposed in 2007, they should thus not be mistaken for anterior measures suggested by the same author. This paper focuses on the new measures only, which are hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z(α) involves the ratio of the mean income of the 100α % poorest to that of the 100(1−α)% richest. The Zenga index can also be expressed by means of the Lorenz Curve and some of its properties make it an interesting alternative to the Gini index. Like most other inequality measures, inference on the Zenga index is not straightforward. Some research on its properties and on estimation has already been conducted but inference in the sampling framework is still needed. In this paper, we propose an estimator and variance estimator for the Zenga index when estimated from a complex sampling design. The proposed variance estimator is based on linearization techniques and more specifically on the direct approach presented by Demnati and Rao. The quality of the resulting estimators are evaluated in Monte Carlo simulation studies on real sets of income data. Finally, the advantages of the Zenga index relative to the Gini index are discussed. Copyright Springer-Verlag 2012

Keywords: Inequality; Sampling; Influence function; Gini; Variance estimation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0369-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:75:y:2012:i:8:p:1093-1110

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-011-0369-1

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:75:y:2012:i:8:p:1093-1110