EconPapers    
Economics at your fingertips  
 

An information theoretical algorithm for analyzing supersaturated designs for a binary response

N. Balakrishnan, C. Koukouvinos () and C. Parpoula

Metrika: International Journal for Theoretical and Applied Statistics, 2013, vol. 76, issue 1, 18 pages

Abstract: A supersaturated design is a factorial design in which the number of effects to be estimated is greater than the number of runs. It is used in many experiments, for screening purpose, i.e., for studying a large number of factors and identifying the active ones. In this paper, we propose a method for screening out the important factors from a large set of potentially active variables through the symmetrical uncertainty measure combined with the information gain measure. We develop an information theoretical analysis method by using Shannon and some other entropy measures such as Rényi entropy, Havrda–Charvát entropy, and Tsallis entropy, on data and assuming generalized linear models for a Bernoulli response. This method is quite advantageous as it enables us to use supersaturated designs for analyzing data on generalized linear models. Empirical study demonstrates that this method performs well giving low Type I and Type II error rates for any entropy measure we use. Moreover, the proposed method is more efficient when compared to the existing ROC methodology of identifying the significant factors for a dichotomous response in terms of error rates. Copyright Springer-Verlag 2013

Keywords: Entropy; Error rates; Factor screening; Generalized linear models; Information gain; ROC; Symmetrical uncertainty (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0373-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:76:y:2013:i:1:p:1-18

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-011-0373-5

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:76:y:2013:i:1:p:1-18