Testing the adequacy of varying coefficient models with missing responses at random
Wangli Xu () and
Lixing Zhu
Metrika: International Journal for Theoretical and Applied Statistics, 2013, vol. 76, issue 1, 53-69
Abstract:
In this paper, we investigate checking the adequacy of varying coefficient models with response missing at random. In doing so, we first construct two completed data sets based on imputation and marginal inverse probability weighted methods, respectively. The empirical process-based tests by using these two completed data sets are suggested and the asymptotic properties of the test statistics under the null and local alternative hypotheses are studied. Because the limiting null distribution is intractable, a Monte Carlo approach is applied to approximate the distribution to determine critical values. Simulation studies are carried out to examine the performance of our method, and a real data set from an environmental study is analyzed for illustration. Copyright Springer-Verlag 2013
Keywords: Model checking; Response missing at random; Imputation; Empirical process; Varying coefficient models (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0375-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:76:y:2013:i:1:p:53-69
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0375-3
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().