An urn-based Bayesian block bootstrap
Pasquale Cirillo and
Pietro Muliere
Metrika: International Journal for Theoretical and Applied Statistics, 2013, vol. 76, issue 1, 93-106
Abstract:
Block bootstrap has been introduced in the literature for resampling dependent data, i.e. stationary processes. One of the main assumptions in block bootstrapping is that the blocks of observations are exchangeable, i.e. their joint distribution is immune to permutations. In this paper we propose a new Bayesian approach to block bootstrapping, starting from the construction of exchangeable blocks. Our sampling mechanism is based on a particular class of reinforced urn processes. Copyright Springer-Verlag 2013
Keywords: Block bootstrap; Exchangeability; Reinforced urn processes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0377-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:76:y:2013:i:1:p:93-106
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0377-1
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().