EconPapers    
Economics at your fingertips  
 

Variable selection and parameter estimation for partially linear models via Dantzig selector

Feng Li (), Lu Lin () and Yuxia Su

Metrika: International Journal for Theoretical and Applied Statistics, 2013, vol. 76, issue 2, 225-238

Abstract: Variable selection plays an important role in the high dimensionality data analysis, the Dantzig selector performs variable selection and model fitting for linear and generalized linear models. In this paper we focus on variable selection and parametric estimation for partially linear models via the Dantzig selector. Large sample asymptotic properties of the Dantzig selector estimator are studied when sample size n tends to infinity while p is fixed. We see that the Dantzig selector might not be consistent. To remedy this drawback, we take the adaptive Dantzig selector motivated by Dicker and Lin (submitted). Moreover, we obtain that the adaptive Dantzig selector estimator for the parametric component of partially linear models has the oracle properties under some appropriate conditions. As generalizations of the Dantzig selector, both the adaptive Dantzig selector and the Dantzig selector optimization can be implemented by the efficient algorithm DASSO proposed by James et al. (J R Stat Soc Ser B 71:127–142, 2009 ). Choices of tuning parameter and bandwidth are also discussed. Copyright Springer-Verlag 2013

Keywords: Partially linear models; Variable selection; Dantzig selector; DASSO (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-012-0384-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:76:y:2013:i:2:p:225-238

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-012-0384-x

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:76:y:2013:i:2:p:225-238