EconPapers    
Economics at your fingertips  
 

A new privacy-protecting survey design for multichotomous sensitive variables

Heiko Groenitz ()

Metrika: International Journal for Theoretical and Applied Statistics, 2014, vol. 77, issue 2, 224 pages

Abstract: In this paper, we propose the diagonal model (DM), a survey technique for multicategorical sensitive variables. The DM is a nonrandomized response method; that is, the DM avoids the use of any randomization device. Thus, both survey complexity and study costs are reduced. The DM does not require that at least one outcome of the sensitive variable is nonsensitive. Thus, the model can even be applied to characteristics like income which are sensitive as a whole. We describe the maximum likelihood estimation for the distribution of the sensitive variable and show that the EM algorithm is beneficial to calculate the estimates. Subsequently, we present asymptotic as well as bootstrap confidence intervals. Applying properties of circulant matrices, we show the connection between efficiency loss and the degree of privacy protection (DPP). Here, we prove that the efficiency loss has a lower bound that depends on the DPP. Moreover, for any desired DPP, we derive model parameters that ensure the largest possible efficiency. Copyright Springer-Verlag 2014

Keywords: Nonrandomized response method; Randomized response model; EM algorithm; Untruthful answers; Circulant matrix (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-012-0406-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:77:y:2014:i:2:p:211-224

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-012-0406-8

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:77:y:2014:i:2:p:211-224