Asymptotic properties of $$M$$ M -estimators in linear and nonlinear multivariate regression models
Christopher Withers and
Saralees Nadarajah ()
Metrika: International Journal for Theoretical and Applied Statistics, 2014, vol. 77, issue 5, 647-673
Abstract:
We consider the (possibly nonlinear) regression model in $$\mathbb{R }^q$$ R q with shift parameter $$\alpha $$ α in $$\mathbb{R }^q$$ R q and other parameters $$\beta $$ β in $$\mathbb{R }^p$$ R p . Residuals are assumed to be from an unknown distribution function (d.f.). Let $$\widehat{\phi }$$ ϕ ^ be a smooth $$M$$ M -estimator of $$\phi={{\beta }\atopwithdelims (){\alpha }}$$ ϕ = β α and $$T(\phi )$$ T ( ϕ ) a smooth function. We obtain the asymptotic normality, covariance, bias and skewness of $$T(\widehat{\phi })$$ T ( ϕ ^ ) and an estimator of $$T(\phi )$$ T ( ϕ ) with bias $$\sim n^{-2}$$ ∼ n - 2 requiring $$\sim n$$ ∼ n calculations. (In contrast, the jackknife and bootstrap estimators require $$\sim n^2$$ ∼ n 2 calculations.) For a linear regression with random covariates of low skewness, if $$T(\phi )=\nu \beta $$ T ( ϕ ) = ν β , then $$T(\widehat{\phi })$$ T ( ϕ ^ ) has bias $$\sim n^{-2}$$ ∼ n - 2 (not $$n^{-1}$$ n - 1 ) and skewness $$\sim n^{-3}$$ ∼ n - 3 (not $$n^{-2}$$ n - 2 ), and the usual approximate one-sided confidence interval (CI) for $$T(\phi )$$ T ( ϕ ) has error $$\sim n^{-1}$$ ∼ n - 1 (not $$n^{-1/2}$$ n - 1 / 2 ). These results extend to random covariates. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Bias reduction; $$M$$ M -estimators; Nonlinear; Regression; Robustness; Skewness (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-013-0458-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:77:y:2014:i:5:p:647-673
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-013-0458-4
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().