A new bounded log-linear regression model
HaiYing Wang (),
Nancy Flournoy () and
Eloi Kpamegan ()
Metrika: International Journal for Theoretical and Applied Statistics, 2014, vol. 77, issue 5, 695-720
Abstract:
In this paper we introduce a new regression model in which the response variable is bounded by two unknown parameters. A special case is a bounded alternative to the four parameter logistic model. The four parameter model which has unbounded responses is widely used, for instance, in bioassays, nutrition, genetics, calibration and agriculture. In reality, the responses are often bounded although the bounds may be unknown, and in that situation, our model reflects the data-generating mechanism better. Complications arise for the new model, however, because the likelihood function is unbounded, and the global maximizers are not consistent estimators of unknown parameters. Although the two sample extremes, the smallest and the largest observations, are consistent estimators for the two unknown boundaries, they have a slow convergence rate and are asymptotically biased. Improved estimators are developed by correcting for the asymptotic biases of the two sample extremes in the one sample case; but even these consistent estimators do not obtain the optimal convergence rate. To obtain efficient estimation, we suggest using the local maximizers of the likelihood function, i.e., the solution to the likelihood equations. We prove that, with probability approaching one as the sample size goes to infinity, there exists a solution to the likelihood equation that is consistent at the rate of the square root of the sample size and it is asymptotically normally distributed. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Asymptotics; Consistency; Linear model; Logistic model; Maximum likelihood estimation; Parameter dependent support (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-013-0460-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:77:y:2014:i:5:p:695-720
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-013-0460-x
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().