Asymptotic behaviour of near-maxima of Gaussian sequences
Rasbagh Vasudeva () and
J. Vasantha Kumari ()
Metrika: International Journal for Theoretical and Applied Statistics, 2014, vol. 77, issue 7, 866 pages
Abstract:
Let $$(X_1,X_2,\ldots ,X_n)$$ ( X 1 , X 2 , … , X n ) be a Gaussian random vector with a common correlation coefficient $$\rho _n,\,0\le \rho _n>1$$ ρ n , 0 ≤ ρ n > 1 , and let $$M_n= \max (X_1,\ldots , X_n),\,n\ge 1$$ M n = max ( X 1 , … , X n ) , n ≥ 1 . For any given $$a>0$$ a > 0 , define $$T_n(a)= \left\{ j,\,1\le j\le n,\,X_j\in (M_n-a,\,M_n]\right\} ,\,K_n(a)= \#T_n(a)$$ T n ( a ) = j , 1 ≤ j ≤ n , X j ∈ ( M n - a , M n ] , K n ( a ) = # T n ( a ) and $$S_n(a)=\sum \nolimits _{j\in T_n(a)}X_j,\,n\ge 1$$ S n ( a ) = ∑ j ∈ T n ( a ) X j , n ≥ 1 . In this paper, we obtain the limit distributions of $$(K_n(a))$$ ( K n ( a ) ) and $$(S_n(a))$$ ( S n ( a ) ) , under the assumption that $$\rho _n\rightarrow \rho $$ ρ n → ρ as $$n\rightarrow \infty ,$$ n → ∞ , for some $$\rho \in [0,1)$$ ρ ∈ [ 0 , 1 ) . Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Gaussian random vector; Near-maxima; Limit theorems (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-013-0468-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:77:y:2014:i:7:p:861-866
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-013-0468-2
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().