EconPapers    
Economics at your fingertips  
 

Robust spline-based variable selection in varying coefficient model

Long Feng, Changliang Zou (), Zhaojun Wang (), Xianwu Wei and Bin Chen

Metrika: International Journal for Theoretical and Applied Statistics, 2015, vol. 78, issue 1, 85-118

Abstract: The varying coefficient model is widely used as an extension of the linear regression model. Many procedures have been developed for the model estimation, and recently efficient variable selection procedures for the varying coefficient model have been proposed as well. However, those variable selection approaches are mainly built on the least-squares (LS) type method. Although the LS method is a successful and standard choice in the varying coefficient model fitting and variable selection, it may suffer when the errors follow a heavy-tailed distribution or in the presence of outliers. To overcome this issue, we start by developing a novel robust estimator, termed rank-based spline estimator, which combines the ideas of rank inference and polynomial spline. Furthermore, we propose a robust variable selection method, incorporating the smoothly clipped absolute deviation penalty into the rank-based spline loss function. Under mild conditions, we theoretically show that the proposed rank-based spline estimator is highly efficient across a wide spectrum of distributions. Its asymptotic relative efficiency with respect to the LS-based method is closely related to that of the signed-rank Wilcoxon test with respect to the t test. Moreover, the proposed variable selection method can identify the true model consistently, and the resulting estimator can be as efficient as the oracle estimator. Simulation studies show that our procedure has better performance than the LS-based method when the errors deviate from normality. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: KLASSO; Oracle property; Polynomial spline; Rank regression; Robust estimation; Robust model selection; SCAD (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-014-0491-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:78:y:2015:i:1:p:85-118

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-014-0491-y

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:78:y:2015:i:1:p:85-118