EconPapers    
Economics at your fingertips  
 

On generalized progressive hybrid censoring in presence of competing risks

Arnab Koley and Debasis Kundu ()
Additional contact information
Arnab Koley: Indian Institute of Technology Kanpur
Debasis Kundu: Indian Institute of Technology Kanpur

Metrika: International Journal for Theoretical and Applied Statistics, 2017, vol. 80, issue 4, No 2, 426 pages

Abstract: Abstract The progressive Type-II hybrid censoring scheme introduced by Kundu and Joarder (Comput Stat Data Anal 50:2509–2528, 2006), has received some attention in the last few years. One major drawback of this censoring scheme is that very few observations (even no observation at all) may be observed at the end of the experiment. To overcome this problem, Cho et al. (Stat Methodol 23:18–34, 2015) recently introduced generalized progressive censoring which ensures to get a pre specified number of failures. In this paper we analyze generalized progressive censored data in presence of competing risks. For brevity we have considered only two competing causes of failures, and it is assumed that the lifetime of the competing causes follow one parameter exponential distributions with different scale parameters. We obtain the maximum likelihood estimators of the unknown parameters and also provide their exact distributions. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals can be obtained. Asymptotic and bootstrap confidence intervals are also provided for comparison purposes. We further consider the Bayesian analysis of the unknown parameters under a very flexible beta–gamma prior. We provide the Bayes estimates and the associated credible intervals of the unknown parameters based on the above priors. We present extensive simulation results to see the effectiveness of the proposed method and finally one real data set is analyzed for illustrative purpose.

Keywords: Competing risk; Generalized progressive hybrid censoring; Beta–gamma distribution; Maximum likelihood estimator; Bootstrap confidence interval; Bayes credible interval; 62F10; 62F03; 62H12 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s00184-017-0611-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:80:y:2017:i:4:d:10.1007_s00184-017-0611-6

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-017-0611-6

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:80:y:2017:i:4:d:10.1007_s00184-017-0611-6