EconPapers    
Economics at your fingertips  
 

Multidimensional strong large deviation results

Cyrille Joutard ()
Additional contact information
Cyrille Joutard: Université Paul-Valéry Montpellier 3

Metrika: International Journal for Theoretical and Applied Statistics, 2017, vol. 80, issue 6, No 4, 663-683

Abstract: Abstract We establish strong large deviation results for an arbitrary sequence of random vectors under some assumptions on the normalized cumulant generating function. In other words, we give asymptotic approximations for a multivariate tail probability of the same kind as the one obtained by Bahadur and Rao (Ann Math Stat 31:1015–1027, 1960) for the sample mean (in the one-dimensional case). The proof of our results follows the same lines as in Chaganty and Sethuraman (J Stat Plan Inference, 55:265–280, 1996). We also present three statistical applications to illustrate our results, the first one dealing with a vector of independent sample variances, the second one with a Gaussian multiple linear regression model and the third one with the multivariate Nadaraya–Watson estimator. Some numerical results are also presented for the first two applications.

Keywords: Large deviations; Bahadur–Rao theorem; Sample variances; Gaussian multiple linear regression model; Multivariate Nadaraya–Watson estimator (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00184-017-0621-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0621-4

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-017-0621-4

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0621-4