EconPapers    
Economics at your fingertips  
 

Ordering properties of the smallest order statistics from generalized Birnbaum–Saunders models with associated random shocks

Longxiang Fang () and N. Balakrishnan ()
Additional contact information
Longxiang Fang: Anhui Normal University
N. Balakrishnan: McMaster University

Metrika: International Journal for Theoretical and Applied Statistics, 2018, vol. 81, issue 1, No 2, 19-35

Abstract: Abstract Let $$X_{1},\ldots , X_{n}$$ X 1 , … , X n be lifetimes of components with independent non-negative generalized Birnbaum–Saunders random variables with shape parameters $$\alpha _{i}$$ α i and scale parameters $$\beta _{i},~ i=1,\ldots ,n$$ β i , i = 1 , … , n , and $$I_{p_{1}},\ldots , I_{p_{n}}$$ I p 1 , … , I p n be independent Bernoulli random variables, independent of $$X_{i}$$ X i ’s, with $$E(I_{p_{i}})=p_{i},~i=1,\ldots ,n$$ E ( I p i ) = p i , i = 1 , … , n . These are associated with random shocks on $$X_{i}$$ X i ’s. Then, $$Y_{i}=I_{p_{i}}X_{i}, ~i=1,\ldots ,n,$$ Y i = I p i X i , i = 1 , … , n , correspond to the lifetimes when the random shock does not impact the components and zero when it does. In this paper, we discuss stochastic comparisons of the smallest order statistic arising from such random variables $$Y_{i},~i=1,\ldots ,n$$ Y i , i = 1 , … , n . When the matrix of parameters $$(h({\varvec{p}}), {\varvec{\beta }}^{\frac{1}{\nu }})$$ ( h ( p ) , β 1 ν ) or $$(h({\varvec{p}}), {\varvec{\frac{1}{\alpha }}})$$ ( h ( p ) , 1 α ) changes to another matrix of parameters in a certain mathematical sense, we study the usual stochastic order of the smallest order statistic in such a setup. Finally, we apply the established results to two special cases: classical Birnbaum–Saunders and logistic Birnbaum–Saunders distributions.

Keywords: Generalized Birnbaum–Saunders distribution; Birnbaum–Saunders distribution; Logistic Birnbaum–Saunders distribution; Usual stochastic order; Smallest order statistic; Random shock; Chain majorization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s00184-017-0632-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:81:y:2018:i:1:d:10.1007_s00184-017-0632-1

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-017-0632-1

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:81:y:2018:i:1:d:10.1007_s00184-017-0632-1