Conditional feature screening for mean and variance functions in models with multiple-index structure
Qinqin Hu and
Lu Lin ()
Additional contact information
Qinqin Hu: Shandong University, Weihai
Lu Lin: Shandong University
Metrika: International Journal for Theoretical and Applied Statistics, 2018, vol. 81, issue 4, No 1, 357-393
Abstract:
Abstract The existing methods for feature screening focus mainly on the mean function of regression models. The variance function, however, plays an important role in statistical theory and application. We thus investigate feature screening for mean and variance functions with multiple-index framework in high dimensional regression models. Notice that some information about predictors can be known in advance from previous investigations and experience, for example, a certain set of predictors is related to the response. Based on the conditional information, together with empirical likelihood, we propose conditional feature screening procedures. Our methods can consistently estimate the sets of active predictors in the mean and variance functions. It is interesting that the proposed screening procedures can avoid estimating the unknown link functions in the mean and variance functions, and moreover, can work well in the case of high correlation among the predictors without iterative algorithm. Therefore, our proposal is of computational simplicity. Furthermore, as a conditional method, our method is robust to the choice of the conditional set. The theoretical results reveal that the proposed procedures have sure screening properties. The attractive finite sample performance of our method is illustrated in simulations and a real data application.
Keywords: Feature screening; Empirical likelihood; Heteroscedasticity; Multiple-index (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00184-018-0646-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:81:y:2018:i:4:d:10.1007_s00184-018-0646-3
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-018-0646-3
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().