EconPapers    
Economics at your fingertips  
 

On the variance parameter estimator in general linear models

Mathias Lindholm () and Felix Wahl
Additional contact information
Mathias Lindholm: Stockholms Universitet Matematiska Institutionen
Felix Wahl: Stockholms Universitet Matematiska Institutionen

Metrika: International Journal for Theoretical and Applied Statistics, 2020, vol. 83, issue 2, No 5, 243-254

Abstract: Abstract In the present note we consider general linear models where the covariates may be both random and non-random, and where the only restrictions on the error terms are that they are independent and have finite fourth moments. For this class of models we analyse the variance parameter estimator. In particular we obtain finite sample size bounds for the variance of the variance parameter estimator which are independent of covariate information regardless of whether the covariates are random or not. For the case with random covariates this immediately yields bounds on the unconditional variance of the variance estimator—a situation which in general is analytically intractable. The situation with random covariates is illustrated in an example where a certain vector autoregressive model which appears naturally within the area of insurance mathematics is analysed. Further, the obtained bounds are sharp in the sense that both the lower and upper bound will converge to the same asymptotic limit when scaled with the sample size. By using the derived bounds it is simple to show convergence in mean square of the variance parameter estimator for both random and non-random covariates. Moreover, the derivation of the bounds for the above general linear model is based on a lemma which applies in greater generality. This is illustrated by applying the used techniques to a class of mixed effects models.

Keywords: General linear models; Non-Gaussian error terms; Moments of variance parameter estimators; Finite sample size bounds; Random covariates; Unconditional bounds (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00184-019-00751-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:83:y:2020:i:2:d:10.1007_s00184-019-00751-4

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2

DOI: 10.1007/s00184-019-00751-4

Access Statistics for this article

Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze

More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metrik:v:83:y:2020:i:2:d:10.1007_s00184-019-00751-4