A-optimal designs under a linearized model for discrete choice experiments
Rakhi Singh (),
Angela Dean,
Ashish Das and
Fangfang Sun
Additional contact information
Rakhi Singh: University of North Carolina at Greensboro
Angela Dean: The Ohio State University
Ashish Das: Indian Institute of Technology Bombay
Fangfang Sun: Harbin Institute of Technology
Metrika: International Journal for Theoretical and Applied Statistics, 2021, vol. 84, issue 4, No 1, 445-465
Abstract:
Abstract Discrete choice experiments have proven useful in areas such as marketing, government planning, medical studies and psychological research, to help understand consumer preferences. To aid in these experiments, several groups of authors have contributed to the theoretical development of D-optimal and A-optimal discrete choice designs under the multinomial logit (MNL) model. In the setting in which the class of feasible designs is too large for complete search, Sun and Dean (J Stat Plann Inference 170:144–157, 2016) proposed a construction method for A-optimal designs for estimating a set of orthonormal contrasts in the option utilities via a linearization of the MNL model. In this paper, we show that the set of A-optimal designs that result from this linearization may or may not include the optimal design under the MNL model itself. We provide an alternative linearization that leads to an information matrix which coincides with that under the MNL model and, consequently, selects the same set of designs as being A-optimal. We obtain a bound for the average variance of a set of contrasts of interest under the MNL model, and show that the construction method of Sun and Dean (2016) can be used to identify A-optimal and A-efficient designs under the MNL model for both equal and unequal utilities.
Keywords: Choice set; Design construction; Multinomial logit model; Variance bound (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00184-020-00771-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:84:y:2021:i:4:d:10.1007_s00184-020-00771-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-020-00771-5
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().