High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design
Chethana Dharmawardane,
Ville Sillanpää and
Jan Holmström ()
Additional contact information
Chethana Dharmawardane: Aalto University
Ville Sillanpää: Relex Solutions
Jan Holmström: Aalto University
Operations Management Research, 2021, vol. 14, issue 1, No 3, 38-60
Abstract:
Abstract Food waste in grocery supply chains may exceed one third of the total volume, depending on the category. To address this problem effectively, grocery retailers are introducing automated systems for more efficient store replenishment and dynamic pricing. The stock keeping unit (SKU) and store level forecast is pivotal in these operations management solutions, but operationally challenging. Large grocery retailers have millions of SKU-store combinations that depending on the operational application would need to be forecasted on a weekly, daily, hourly, or even 15-min frequency. However, in grocery it is challenging to account for demand variation at high frequencies without introducing manual decisions into the process of forecast model configuration. To investigate the limits of current practice and explore opportunities of technology-enabled change, we explore how an advanced forecasting method for electricity demand, called TBATS, can automate daily forecasting for grocery store replenishment. Adopting an interventionist approach, we explore the implications for the design of the operational process in the operational setting provided by the case company. We find that TBATS can produce high frequency base forecasts for the SKU-store level accurately for a period exceeding 3 months. This finding points to the opportunity of shifting operational focus from recalculating forecasts to monitoring forecast errors. Introducing variable, even indefinite re-training frequencies for forecasting models is a significant change of the forecasting process for situations where monitoring requires less computation than retraining, potentially reducing the time and cost associated with increasing the forecast frequency.
Keywords: Grocery retail operations; Automatic store replenishment; High frequency forecasting; Retraining frequency; Error monitoring (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12063-020-00176-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:opmare:v:14:y:2021:i:1:d:10.1007_s12063-020-00176-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12063
DOI: 10.1007/s12063-020-00176-7
Access Statistics for this article
Operations Management Research is currently edited by Jan Olhager and Scott Shafer
More articles in Operations Management Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().