Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis
Marta Soares and
Luísa Canto e Castro
PharmacoEconomics, 2012, vol. 30, issue 12, 1117 pages
Abstract:
The design of decision-analytic models for cost-effectiveness analysis has been the subject of discussion. The current work addresses this issue by noting that, when time is to be explicitly modelled, we need to represent phenomena occurring in continuous time. Models evaluated in continuous time may not have closed-form solutions, and in this case, two approximations can be used: simulation models in continuous time and discretized models at the aggregate level. Stylized examples were set up where both approximations could be implemented. These aimed to illustrate determinants of the use of the two approximations: cycle length and precision, the use of continuity corrections in discretized models and the discretization of rates into probabilities. The examples were also used to explore the impact of the approximations not only in terms of absolute survival but also cost effectiveness and incremental comparisons. Discretized models better approximate continuous time results if lower cycle lengths are used. Continuous time simulation models are inherently stochastic, and the precision of the results is determined by the simulation sample size. The use of continuity corrections in discretized models allows the use of greater cycle lengths, producing no significant bias from the discretization. How the process is discretized (the conversion of rates into probabilities) is key. Results show that appropriate discretization coupled with the use of a continuity correction produces results unbiased for higher cycle lengths. Alternative methods of discretization are less efficient, i.e. lower cycle lengths are needed to obtain unbiased results. The developed work showed the importance of acknowledging bias in estimating cost effectiveness. When the alternative approximations can be applied, we argue that it is preferable to implement a cohort discretized model rather than a simulation model in continuous time. In practice, however, it may not be possible to represent the decision problem by any conventionally defined discretized model, in which case other model designs need to be applied, e.g. a simulation model. Copyright Springer International Publishing AG 2012
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.2165/11599380-000000000-00000 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pharme:v:30:y:2012:i:12:p:1101-1117
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40273
DOI: 10.2165/11599380-000000000-00000
Access Statistics for this article
PharmacoEconomics is currently edited by Timothy Wrightson and Christopher I. Carswell
More articles in PharmacoEconomics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().