The approach of power priors for ability estimation in IRT models
Mariagiulia Matteucci and
Bernard Veldkamp ()
Quality & Quantity: International Journal of Methodology, 2015, vol. 49, issue 3, 917-926
Abstract:
The aim of the paper is to propose the introduction of power prior distributions in the ability estimation of item response theory (IRT) models. In the literature, power priors have been proposed to integrate information coming from historical data with current data within Bayesian parameter estimation for generalized linear models. This approach allows to use a weighted posterior distribution based on the historical study as prior distribution for the parameters in the current study. Applications can be found especially in clinical trials and survival studies. Here, power priors are introduced within a Gibbs sampler scheme in the ability estimation step for a unidimensional IRT model. A Markov chain Monte Carlo algorithm is chosen for the high flexibility and possibility of extension to more complex models. The efficiency of the approach is demonstrated in terms of measurement precision by using data from the Hospital Anxiety and Depression Scale with a small sample. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Power priors; Item response theory models; Ability estimation; Gibbs sampler (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11135-014-0059-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:qualqt:v:49:y:2015:i:3:p:917-926
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135
DOI: 10.1007/s11135-014-0059-y
Access Statistics for this article
Quality & Quantity: International Journal of Methodology is currently edited by Vittorio Capecchi
More articles in Quality & Quantity: International Journal of Methodology from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().