Testing the Validity of a Link Function Assumption in Repeated Type-II Censored General Step-Stress Experiments
Stefan Bedbur () and
Thomas Seiche
Additional contact information
Stefan Bedbur: Institute of Statistics
Thomas Seiche: Institute of Statistics
Sankhya B: The Indian Journal of Statistics, 2022, vol. 84, issue 1, No 4, 106-129
Abstract:
Abstract In step-stress experiments, test units are successively exposed to higher usually increasing levels of stress to cause earlier failures and to shorten the duration of the experiment. When parameters are associated with the stress levels, one problem is to estimate the parameter corresponding to normal operating conditions based on failure data obtained under higher stress levels. For this purpose, a link function connecting parameters and stress levels is usually assumed, the validity of which is often at the discretion of the experimenter. In a general step-stress model based on multiple samples of sequential order statistics, we provide exact statistical tests to decide whether the assumption of some link function is adequate. The null hypothesis of a proportional, linear, power or log-linear link function is considered in detail, and associated inferential results are stated. In any case, except for the linear link function, the test statistics derived are shown to have only one distribution under the null hypothesis, which simplifies the computation of (exact) critical values. Asymptotic results are addressed, and a power study is performed for testing on a log-linear link function. Some improvements of the tests in terms of power are discussed.
Keywords: Accelerated life testing; step-stress model; link function; sequential order statistics; maximum likelihood estimation; Hypothesis test.; Primary 62N03; 62N05; Secondary 62F03. (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13571-021-00250-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00250-5
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13571
DOI: 10.1007/s13571-021-00250-5
Access Statistics for this article
Sankhya B: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya B: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().