EconPapers    
Economics at your fingertips  
 

Optimal Stock Portfolio Selection with a Multivariate Hidden Markov Model

Reetam Majumder (), Qing Ji () and Nagaraj K. Neerchal ()
Additional contact information
Reetam Majumder: University of Maryland Baltimore County
Qing Ji: Procter & Gamble
Nagaraj K. Neerchal: University of Maryland Baltimore County

Sankhya B: The Indian Journal of Statistics, 2023, vol. 85, issue 1, No 6, 177-198

Abstract: Abstract The underlying market trends that drive stock price fluctuations are often referred to in terms of bull and bear markets. Optimal stock portfolio selection methods need to take into account these market trends; however, the bull and bear market states tend to be unobserved and can only be assigned retrospectively. We fit a linked hidden Markov model (LHMM) to relative stock price changes for S&P 500 stocks from 2011–2016 based on weekly closing values. The LHMM consists of a multivariate state process whose individual components correspond to HMMs for each of the 12 sectors of the S&P 500 stocks. The state processes are linked using a Gaussian copula so that the states of the component chains are correlated at any given time point. The LHMM allows us to capture more heterogeneity in the underlying market dynamics for each sector. In this study, stock performances are evaluated in terms of capital gains using the LHMM by utilizing historical stock price data. Based on the fitted LHMM, optimal stock portfolios are constructed to maximize capital gain while balancing reward and risk. Under out-of-sample testing, the annual capital gain for the portfolios for 2016–2017 are calculated. Portfolios constructed using the LHMM are able to generate returns comparable to the S&P 500 index.

Keywords: Linked hidden Markov model; multivariate Markov chain; stochastic simulations; portfolio allocation; Gaussian copula; Primary 62P05; Secondary 62H22, 62M05 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13571-022-00290-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sankhb:v:85:y:2023:i:1:d:10.1007_s13571-022-00290-5

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13571

DOI: 10.1007/s13571-022-00290-5

Access Statistics for this article

Sankhya B: The Indian Journal of Statistics is currently edited by Dipak Dey

More articles in Sankhya B: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sankhb:v:85:y:2023:i:1:d:10.1007_s13571-022-00290-5