Black-box optimization on hyper-rectangle using Recursive Modified Pattern Search and application to ROC-based Classification Problem
Priyam Das ()
Additional contact information
Priyam Das: Virginia Commonwealth University
Sankhya B: The Indian Journal of Statistics, 2023, vol. 85, issue 2, No 6, 365-404
Abstract:
Abstract In statistics, it is common to encounter multi-modal and non-smooth likelihood (or objective function) maximization problems, where the parameters have known upper and lower bounds. This paper proposes a novel derivative-free global optimization technique that can be used to solve those problems even when the objective function is not known explicitly or its derivatives are difficult or expensive to obtain. The technique is based on the pattern search algorithm, which has been shown to be effective for black-box optimization problems. The proposed algorithm works by iteratively generating new solutions from the current solution. The new solutions are generated by making movements along the coordinate axes of the constrained sample space. Before making a jump from the current solution to a new solution, the objective function is evaluated at several neighborhood points around the current solution. The best solution point is then chosen based on the objective function values at those points. Parallel threading can be used to make the algorithm more scalable. The performance of the proposed method is evaluated by optimizing up to 5000-dimensional multi-modal benchmark functions. The proposed algorithm is shown to be up to 40 and 368 times faster than genetic algorithm (GA) and simulated annealing (SA), respectively. The proposed method is also used to estimate the optimal biomarker combination from Alzheimer’s disease data by maximizing the empirical estimates of the area under the receiver operating characteristic curve (AUC), outperforming the contextual popular alternative, known as step-down algorithm.
Keywords: Non-convex optimization; Blackbox optimization; pattern search; AUC; multi-modal objective function; Primary 90; Secondary 62 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13571-023-00312-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sankhb:v:85:y:2023:i:2:d:10.1007_s13571-023-00312-w
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/13571
DOI: 10.1007/s13571-023-00312-w
Access Statistics for this article
Sankhya B: The Indian Journal of Statistics is currently edited by Dipak Dey
More articles in Sankhya B: The Indian Journal of Statistics from Springer, Indian Statistical Institute
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().