EconPapers    
Economics at your fingertips  
 

Heuristics as conceptual lens for understanding and studying the usage of bibliometrics in research evaluation

Lutz Bornmann () and Julian N. Marewski ()
Additional contact information
Julian N. Marewski: Université de Lausanne

Scientometrics, 2019, vol. 120, issue 2, No 4, 419-459

Abstract: Abstract While bibliometrics are widely used for research evaluation purposes, a common theoretical framework for conceptually understanding, empirically studying, and effectively teaching its usage is lacking. In this paper, we outline such a framework: the fast-and-frugal heuristics research program, proposed originally in the context of the cognitive and decision sciences, lends itself particularly well for understanding and investigating the usage of bibliometrics in research evaluations. Such evaluations represent judgments under uncertainty in which typically not all possible options, their consequences, and those consequences’ probabilities of occurring may be known. In these situations of incomplete information, candidate descriptive and prescriptive models of human behavior are heuristics. Heuristics are simple strategies that, by exploiting the structure of environments, can aid people to make smart decisions. Relying on heuristics does not mean trading off accuracy against effort: while reducing complexity, heuristics can yield better decisions than more information-greedy procedures in many decision environments. The prescriptive power of heuristics is documented in a cross-disciplinary literature, cutting across medicine, crime, business, sports, and other domains. We outline the fast-and-frugal heuristics research program, provide examples of past empirical work on heuristics outside the field of bibliometrics, explain why heuristics may be especially suitable for studying the usage of bibliometrics, and propose a corresponding conceptual framework.

Keywords: Bibliometrics; Fast-and-frugal heuristics; Research evaluation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03018-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03018-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-019-03018-x

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03018-x