Agreement, separability, and other axioms for quasi-linear social choice problems
Youngsub Chun
Social Choice and Welfare, 2000, vol. 17, issue 3, 507-521
Abstract:
A quasi-linear social choice problem is concerned with choosing one among a finite set of public projects and determining side payments among agents to cover the cost of the project, assuming each agent has quasi-linear preferences. We first investigate the logical relations between various axioms in this context. They are: agreement, separability, population solidarity, consistency, converse consistency, and population-and-cost solidarity. Also, on the basis of these axioms, we present alternative characterizations of egalitarian solutions; each solution assigns to each agent an equal share of the surplus derived from the public project over some reference utility level, but uses a different method to compute the reference utility level.
Date: 2000-05-02
Note: Received: 18 May 1998/Accepted: 1 July 1999
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.de/link/service/journals/00355/papers/0017003/00170507.pdf (application/pdf)
Access to the full text of the articles in this series is restricted
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:17:y:2000:i:3:p:507-521
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().