Aggregated statistical rankings are arbitrary
Deanna B. Haunsperger
Social Choice and Welfare, 2003, vol. 20, issue 2, 272 pages
Abstract:
In many areas of mathematics, statistics, and the social sciences, the intriguing, and somewhat unsettling, paradox occurs where the “parts” may give rise to a common decision, but the aggregate of those parts, the “whole”, gives rise to a different decision. The Kruskal-Wallis nonparametric statistical test on n samples which can be used to rank-order a list of alternatives is subject to such a Simpson-like paradox of aggregation. That is, two or more data sets each may individually support a certain ordering of the samples under Kruskal-Wallis, yet their union, or aggregate, yields a different outcome. An analysis of this phenomenon yields a computable criterion which characterizes which matrices of ranked data, when aggregated, can give rise to such a paradox. Copyright Springer-Verlag Berlin Heidelberg 2003
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s003550200179 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:20:y:2003:i:2:p:261-272
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
DOI: 10.1007/s003550200179
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().