EconPapers    
Economics at your fingertips  
 

Exploiting polyhedral symmetries in social choice

Achill Schürmann ()

Social Choice and Welfare, 2013, vol. 40, issue 4, 1097-1110

Abstract: A large amount of literature in social choice theory deals with quantifying the probability of certain election outcomes. One way of computing the probability of a specific voting situation under the Impartial Anonymous Culture assumption is via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortunately the dimension and complexity of the involved polyhedra grows rapidly with the number of candidates. However, if we exploit available polyhedral symmetries, some computations become possible that previously were infeasible. We show this in three well known examples: Condorcet’s paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality Runoff. Copyright Springer-Verlag 2013

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00355-012-0667-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:40:y:2013:i:4:p:1097-1110

Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355

DOI: 10.1007/s00355-012-0667-1

Access Statistics for this article

Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe

More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sochwe:v:40:y:2013:i:4:p:1097-1110