A law of large numbers for weighted plurality
Joe Neeman ()
Social Choice and Welfare, 2014, vol. 42, issue 1, 99-109
Abstract:
Consider an election between $$k$$ candidates in which each voter votes randomly (but not necessarily independently) for a single candidate, and suppose that there is a single candidate that every voter prefers (in the sense that each voter is more likely to vote for this special candidate than any other candidate). Suppose we have a voting rule that takes all of the votes and produces a single outcome and suppose that each individual voter has little effect on the outcome of the voting rule. If the voting rule is a weighted plurality, then we show that with high probability, the preferred candidate will win the election. Conversely, we show that this statement fails for all other reasonable voting rules. This result is an extension of one by Häggström, Kalai and Mossel, who proved the above in the case $$k=2$$ . Copyright Springer-Verlag Berlin Heidelberg 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00355-013-0732-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:42:y:2014:i:1:p:99-109
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
DOI: 10.1007/s00355-013-0732-4
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().