A note on the McKelvey uncovered set and Pareto optimality
Felix Brandt (),
Christian Geist () and
Paul Harrenstein ()
Social Choice and Welfare, 2016, vol. 46, issue 1, 91 pages
Abstract:
We consider the notion of Pareto optimality under the assumption that only the pairwise majority relation is known and show that the set of necessarily Pareto optimal alternatives coincides with the McKelvey uncovered set. As a consequence, the McKelvey uncovered set constitutes the coarsest Pareto optimal majoritarian social choice function. Moreover, every majority relation is induced by a preference profile in which the uncovered alternatives precisely coincide with the Pareto optimal ones. We furthermore discuss the structure of the McKelvey covering relation and the McKelvey uncovered set. Copyright Springer-Verlag Berlin Heidelberg 2016
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00355-015-0904-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:46:y:2016:i:1:p:81-91
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
DOI: 10.1007/s00355-015-0904-5
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().