Limit representations of intergenerational equity
Toyotaka Sakai
Social Choice and Welfare, 2016, vol. 47, issue 2, No 13, 500 pages
Abstract:
Abstract Equal treatment of all generations is a fundamental ethical principle in intertemporal welfare economics. This principle is expressed in anonymity axioms of orderings on the set of infinite utility streams. We first show that an ordering satisfies finite anonymity, uniform Pareto, weak non-substitution, and sup continuity if and only if it is represented by an increasing, continuous function that is a natural extension of the limit function. We then show that whenever such an ordering is infinitely anonymous, it depends only on the liminf and limsup of any utility stream. Our results imply that in ethically ranking utility streams, reflecting only infinitely long-run movements is possible, with liminf and limsup particularly essential, but it is impossible to respect finite generations.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1007/s00355-016-0973-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:47:y:2016:i:2:d:10.1007_s00355-016-0973-0
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
DOI: 10.1007/s00355-016-0973-0
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().