EconPapers    
Economics at your fingertips  
 

An alternative to unrelated randomized response techniques with logistic regression analysis

Shu-Hui Hsieh (), Shen-Ming Lee (), Chin-Shang Li () and Su-Hao Tu ()
Additional contact information
Shu-Hui Hsieh: Academia Sinica
Chin-Shang Li: University of California
Su-Hao Tu: Academia Sinica

Statistical Methods & Applications, 2016, vol. 25, issue 4, No 5, 621 pages

Abstract: Abstract The randomized response technique (RRT) is an important tool that is commonly used to protect a respondent’s privacy and avoid biased answers in surveys on sensitive issues. In this work, we consider the joint use of the unrelated-question RRT of Greenberg et al. (J Am Stat Assoc 64:520–539, 1969) and the related-question RRT of Warner (J Am Stat Assoc 60:63–69, 1965) dealing with the issue of an innocuous question from the unrelated-question RRT. Unlike the existing unrelated-question RRT of Greenberg et al. (1969), the approach can provide more information on the innocuous question by using the related-question RRT of Warner (1965) to effectively improve the efficiency of the maximum likelihood estimator of Scheers and Dayton (J Am Stat Assoc 83:969–974, 1988). We can then estimate the prevalence of the sensitive characteristic by using logistic regression. In this new design, we propose the transformation method and provide large-sample properties. From the case of two survey studies, an extramarital relationship study and a cable TV study, we develop the joint conditional likelihood method. As part of this research, we conduct a simulation study of the relative efficiencies of the proposed methods. Furthermore, we use the two survey studies to compare the analysis results under different scenarios.

Keywords: Randomized response technique; Transformation method; Joint conditional likelihood method (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10260-016-0351-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:25:y:2016:i:4:d:10.1007_s10260-016-0351-1

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-016-0351-1

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:25:y:2016:i:4:d:10.1007_s10260-016-0351-1