Parameter estimation for binomial AR(1) models with applications in finance and industry
Christian Weiß () and
Hee-Young Kim ()
Statistical Papers, 2013, vol. 54, issue 3, 563-590
Abstract:
Methods for analyzing and modeling count data time series are used in various fields of practice, and they are particularly relevant for applications in finance and economy. We consider the binomial autoregressive (AR(1)) model for count data processes with a first-order AR dependence structure and a binomial marginal distribution. We present four approaches for estimating its model parameters based on given time series data, and we derive expressions for the asymptotic distribution of these estimators. Then we investigate the finite-sample performance of the estimators and of the respective asymptotic approximations in a simulation study, including a discussion of the 2-block jackknife. We illustrate our methods and findings with a real-data example about transactions at the Korea stock market. We conclude with an application of our results for obtaining reliable estimates for process capability indices. Copyright Springer-Verlag 2013
Keywords: Binomial AR(1) model; Parameter estimation; Process capability indices; Stock data; Thinning operations; 2-Block jackknife (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-012-0449-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:54:y:2013:i:3:p:563-590
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-012-0449-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().