Inference on unknown parameters of a Burr distribution under hybrid censoring
Manoj Rastogi and
Yogesh Tripathi ()
Statistical Papers, 2013, vol. 54, issue 3, 619-643
Abstract:
Based on hybrid censored data, the problem of making statistical inference on parameters of a two parameter Burr Type XII distribution is taken up. The maximum likelihood estimates are developed for the unknown parameters using the EM algorithm. Fisher information matrix is obtained by applying missing value principle and is further utilized for constructing the approximate confidence intervals. Some Bayes estimates and the corresponding highest posterior density intervals of the unknown parameters are also obtained. Lindley’s approximation method and a Markov Chain Monte Carlo (MCMC) technique have been applied to evaluate these Bayes estimates. Further, MCMC samples are utilized to construct the highest posterior density intervals as well. A numerical comparison is made between proposed estimates in terms of their mean square error values and comments are given. Finally, two data sets are analyzed using proposed methods. Copyright Springer-Verlag 2013
Keywords: Bayes estimates; EM algorithm; Hybrid type I censoring; Importance sampling; Lindley approximation method; Loss functions; Maximum likelihood estimates; 62F10; 62F15; 62N02 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-012-0452-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:54:y:2013:i:3:p:619-643
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-012-0452-3
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().