EconPapers    
Economics at your fingertips  
 

Random rounded integer-valued autoregressive conditional heteroskedastic process

Tianqing Liu () and Xiaohui Yuan ()

Statistical Papers, 2013, vol. 54, issue 3, 645-683

Abstract: The statistical literature on the analysis of discrete variate time series has concentrated mainly on parametric models, that is the conditional probability mass function is assumed to belong to a parametric family. Generally, these parametric models impose strong assumptions on the relationship between the conditional mean and variance. To generalize these implausible assumptions, this paper instead considers a more realistic semiparametric model, called random rounded integer-valued autoregressive conditional heteroskedastic (RRINARCH) model, where there are essentially no assumptions on the relationship between the conditional mean and variance. The new model has several advantages: (a) it provides a coherent semiparametric framework for discrete variate time series, in which the conditional mean and variance can be modeled separately; (b) it allows negative values both for the series and its autocorrelation function; (c) its autocorrelation structure is the same as that of a standard autoregressive (AR) process; (d) standard software for its estimation is directly applicable. For the new model, conditions for stationarity, ergodicity and the existence of moments are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Simulation experiments are carried out to assess the performance of the model. The analyses of real data sets illustrate the flexibility and usefulness of the RRINARCH model for obtaining more realistic forecast means and variances. Copyright Springer-Verlag 2013

Keywords: Count data; Conditional mean; Conditional variance; Integer-valued time series; Random rounding operator (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-012-0453-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:54:y:2013:i:3:p:645-683

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-012-0453-2

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:645-683