Robust estimation of dynamic fixed-effects panel data models
Michele Aquaro () and
Pavel Cizek
Statistical Papers, 2014, vol. 55, issue 1, 169-186
Abstract:
This paper extends an existing outlier-robust estimator of linear dynamic panel data models with fixed effects, which is based on the median ratio of two consecutive pairs of first-order differenced data. To improve its precision and robustness properties, a general procedure based on higher-order pairwise differences and their ratios is designed. The asymptotic distribution of this class of estimators is derived. Further, the breakdown point properties are obtained under contamination by independent additive outliers and by the patches of additive outliers, and are used to select the pairwise differences that do not compromise the robustness properties of the procedure. The proposed estimator is additionally compared with existing methods by means of Monte Carlo simulations. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Breakdown point; Dynamic panel data; Fixed effects; Pairwise differences; Robust estimation; 62F10; 62F12; 62F35 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0545-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:1:p:169-186
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0545-7
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().