EconPapers    
Economics at your fingertips  
 

Fast nonparametric classification based on data depth

Tatjana Lange (), Karl Mosler and Pavlo Mozharovskyi ()

Statistical Papers, 2014, vol. 55, issue 1, 49-69

Abstract: A new procedure, called D D α-procedure, is developed to solve the problem of classifying d-dimensional objects into q ≥ 2 classes. The procedure is nonparametric; it uses q-dimensional depth plots and a very efficient algorithm for discrimination analysis in the depth space [0,1] q . Specifically, the depth is the zonoid depth, and the algorithm is the α-procedure. In case of more than two classes several binary classifications are performed and a majority rule is applied. Special treatments are discussed for ‘outsiders’, that is, data having zero depth vector. The D Dα-classifier is applied to simulated as well as real data, and the results are compared with those of similar procedures that have been recently proposed. In most cases the new procedure has comparable error rates, but is much faster than other classification approaches, including the support vector machine. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Alpha-procedure; Zonoid depth; DD-plot; Pattern recognition; Supervised learning; Misclassification rate; Support vector machine (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-012-0488-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:1:p:49-69

Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362

DOI: 10.1007/s00362-012-0488-4

Access Statistics for this article

Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller

More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stpapr:v:55:y:2014:i:1:p:49-69