Replicated measurement error model under exact linear restrictions
Sukhbir Singh,
Kanchan Jain () and
Suresh Sharma
Statistical Papers, 2014, vol. 55, issue 2, 253-274
Abstract:
We consider a replicated ultrastructural measurement error regression model where predictor variables are observed with error. It is assumed that some prior information regarding the regression coefficients is available in the form of exact linear restrictions. Three classes of estimators of regression coefficients are proposed. These estimators are shown to be consistent as well as satisfying the given restrictions. The asymptotic properties of unrestricted as well as restricted estimators are studied without imposing any distributional assumption on any random component of the model. A Monte Carlo simulations study is performed to assess the effect of sample size, replicates and non-normality on the estimators. Copyright Springer-Verlag 2014
Keywords: Measurement error; Multiple regression; Replications; Linear restrictions; Consistent estimators; 62J05; 62H12 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-012-0469-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:2:p:253-274
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-012-0469-7
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().