Derivatives and Fisher information of bivariate copulas
Ulf Schepsmeier () and
Jakob Stöber ()
Statistical Papers, 2014, vol. 55, issue 2, 525-542
Abstract:
Data sets with complex relationships between random variables are increasingly studied in statistical applications. A popular approach to model their dependence is the use of copula functions. Our contribution is to derive expressions for the observed and expected information for several bivariate copula families, in particular for the Student’s $$t$$ -copula. Further likelihood derivatives which are required for numerical implementations are computed and a numerically stable implementation is provided in the R-package VineCopula. Using a real world data set of stock returns, we demonstrate the applicability of our approach for the routinely calculation of standard errors. In particular, we illustrate how this prevents overestimating the time-variation of dependence parameters in a rolling window analysis. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Copula; Expected information; Observed information; Derivatives; 62F10; 62F12; 62F99 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0498-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:2:p:525-542
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0498-x
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().