Spatial robust small area estimation
Timo Schmid () and
Ralf Münnich ()
Statistical Papers, 2014, vol. 55, issue 3, 653-670
Abstract:
The accuracy of recent applications in small area statistics in many cases highly depends on the assumed properties of the underlying models and the availability of micro information. In finite population sampling, small sample sizes may increase the sensitivity of the modeling with respect to single units. In these cases, area-specific sample sizes tend to be small such that normal assumptions, even of area means, seem to be violated. Hence, applying robust estimation methods is expected to yield more reliable results. In general, two robust small area methods are applied, the robust EBLUP and the M-quantile method. Additionally, the use of adequate auxiliary information may further increase the accuracy of the estimates. In prediction based approaches where information is needed on universe level, in general, only few variables are available which can be used for modeling. In addition to variables from the dataset, in many cases further information may be available, e.g. geographical information which could indicate spatial dependencies between neighboring areas. This spatial information can be included in the modeling using spatially correlated area effects. Within the paper the classical robust EBLUP is extended to cover spatial area effects via a simultaneous autoregressive model. The performance of the different estimators are compared in a model-based simulation study. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Small area estimation; M-quantile; Robust EBLUP; Spatial correlation; 62F10; 62F35 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0517-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:3:p:653-670
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0517-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().