On the central limit theorem along subsequences of sums of i.i.d. random variables
Deli Li (),
Oleg Klesov () and
George Stoica ()
Statistical Papers, 2014, vol. 55, issue 4, 1035-1045
Abstract:
Let $$\mathbb{N }=\{1, 2, 3, \ldots \}$$ N = { 1 , 2 , 3 , … } . Let $$\{X, X_{n}; n \in \mathbb N \}$$ { X , X n ; n ∈ N } be a sequence of i.i.d. random variables, and let $$S_{n}=\sum _{i=1}^{n}X_{i}, n \in \mathbb N $$ S n = ∑ i = 1 n X i , n ∈ N . Then $$ S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})$$ S n / n ⇒ N ( 0 , σ 2 ) for some $$\sigma ^{2} > \infty $$ σ 2 > ∞ whenever, for a subsequence $$\{n_{k}; k \in \mathbb N \}$$ { n k ; k ∈ N } of $$\mathbb N $$ N , $$ S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})$$ S n k / n k ⇒ N ( 0 , σ 2 ) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when $$\{\sqrt{n}; n \in \mathbb N \}$$ { n ; n ∈ N } is replaced by $$\{\sqrt{na_{n}};n \in \mathbb N \}$$ { n a n ; n ∈ N } with $$\lim _{n \rightarrow \infty } a_{n}=\infty $$ lim n → ∞ a n = ∞ . We show that, for given positive nondecreasing sequence $$\{a_{n}; n \in \mathbb N \}$$ { a n ; n ∈ N } with $$\lim _{n \rightarrow \infty } a_{n}=\infty $$ lim n → ∞ a n = ∞ and $$\lim _{n \rightarrow \infty } a_{n+1}/a_{n}=1$$ lim n → ∞ a n + 1 / a n = 1 and given nondecreasing function $$h(\cdot ): (0, \infty ) \rightarrow (0, \infty )$$ h ( · ) : ( 0 , ∞ ) → ( 0 , ∞ ) with $$\lim _{x \rightarrow \infty } h(x)=\infty $$ lim x → ∞ h ( x ) = ∞ , there exists a sequence $$\{X, X_{n}; n \in \mathbb N \}$$ { X , X n ; n ∈ N } of symmetric i.i.d. random variables such that $$\mathbb E h(|X|)=\infty $$ E h ( | X | ) = ∞ and, for some subsequence $$\{n_{k}; k \in \mathbb N \}$$ { n k ; k ∈ N } of $$\mathbb N $$ N , $$ S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)$$ S n k / n k a n k ⇒ N ( 0 , 1 ) . In particular, for given $$0 > p > 2$$ 0 > p > 2 and given nondecreasing function $$h(\cdot ): (0, \infty ) \rightarrow (0, \infty )$$ h ( · ) : ( 0 , ∞ ) → ( 0 , ∞ ) with $$\lim _{x \rightarrow \infty } h(x)=\infty $$ lim x → ∞ h ( x ) = ∞ , there exists a sequence $$\{X, X_{n}; n \in \mathbb N \}$$ { X , X n ; n ∈ N } of symmetric i.i.d. random variables such that $$\mathbb E h(|X|)=\infty $$ E h ( | X | ) = ∞ and, for some subsequence $$\{n_{k}; k \in \mathbb N \}$$ { n k ; k ∈ N } of $$\mathbb N $$ N , $$ S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)$$ S n k / n k 1 / p ⇒ N ( 0 , 1 ) . Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Central limit theorem; Law of large numbers; Subsequences; Sums of i.i.d. random variables; Primary: 60F05; Secondary: 60G50 (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0551-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:4:p:1035-1045
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0551-9
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().