Selection of tuning parameters in bridge regression models via Bayesian information criterion
Shuichi Kawano ()
Statistical Papers, 2014, vol. 55, issue 4, 1207-1223
Abstract:
We consider bridge regression models, which can produce a sparse or non-sparse model by controlling a tuning parameter in the penalty term. A crucial part of a model building strategy is the selection of the values for adjusted parameters, such as regularization and tuning parameters. Indeed, this can be viewed as a problem in selecting and evaluating the model. We propose a Bayesian selection criterion for evaluating bridge regression models. This criterion enables us to objectively select the values of the adjusted parameters. We investigate the effectiveness of our proposed modeling strategy with some numerical examples. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Bridge penalty; Model selection; Penalized maximum likelihood method; Sparse regression; 62J05; 62G05; 62F15 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0561-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:55:y:2014:i:4:p:1207-1223
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0561-7
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().