Analyzing supersaturated designs for discrete responses via generalized linear models
N. Balakrishnan,
C. Koukouvinos () and
C. Parpoula
Statistical Papers, 2015, vol. 56, issue 1, 145 pages
Abstract:
A supersaturated design is a factorial design in which the number of factors to be estimated is larger than the available number of experimental runs. The cost and time required for many industrial experimentations can be reduced by using the class of supersaturated designs, since the main goal for such a design is to identify only a few of the factors under consideration that have dominant effects and to do this identification at a minimal cost. While most of the literature on supersaturated designs has focused on the construction of designs and their optimality properties, the data analysis of such designs has not been developed to a great extent. In this paper, we propose a supersaturated design analysis method, by assuming generalized linear models for discrete responses, for analyzing main effects designs and identifying simultaneously the effects that are significant. Empirical study demonstrates that this method performs well with low Type I and Type II error rates. The proposed method is therefore useful as it enables us to use supersaturated designs for analyzing data on discrete response regression models. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Entropy; Error rates; Factor screening; Discrete response regression models; Information gain; Symmetrical uncertainty; 62K15; 62-07; 62J12 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-013-0569-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:56:y:2015:i:1:p:121-145
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-013-0569-z
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().