Single-index composite quantile regression with heteroscedasticity and general error distributions
Rong Jiang (),
Wei-Min Qian () and
Zhan-Gong Zhou ()
Statistical Papers, 2016, vol. 57, issue 1, 185-203
Abstract:
It is known that composite quantile regression (CQR) could be much more efficient and sometimes arbitrarily more efficient than the least squares estimator. Based on CQR method, we propose a weighted CQR (WCQR) method for single-index models with heteroscedasticity and general error distributions. Because of the use of weights, the estimation bias is eliminated asymptotically. By comparing asymptotic relative efficiency, WCQR estimation outperforms the CQR estimation and least squares estimation. The simulation studies and a real data application are conducted to illustrate the finite sample performance of the proposed methods. Copyright Springer-Verlag Berlin Heidelberg 2016
Keywords: Composite quantile regression; Asymptotic efficiency; Single-index model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00362-014-0646-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stpapr:v:57:y:2016:i:1:p:185-203
Ordering information: This journal article can be ordered from
http://www.springer. ... business/journal/362
DOI: 10.1007/s00362-014-0646-y
Access Statistics for this article
Statistical Papers is currently edited by C. Müller, W. Krämer and W.G. Müller
More articles in Statistical Papers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().